Single- & Entangled Photon Sources:

We are working on nonclassical light sources:

Their applications are secure quantum communication, quantum metrology, fundamental physics experiments, and student education. Entanglement is also a key concept in quantum computing.

For first reading about single and entangled photon sources, their preparation and practical use see review paper S.G. Lukishova, "Single photon sources for secure quantum communication", Proceedings SPIE 9065, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2013, 90650C (November 28, 2013).

Single - photon sources

Single-photon source set-ups

Some of our publications on single-photon sources [obtained on two experimental set ups (photos on the left)]:

1. Efficient room-temperature source of polarized single photons, S.G. Lukishova, R.W. Boyd, C.R. Stroud, US Patent 7,253,871 (2007).

2. Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host, S.G Lukishova, L.J Bissell, J. Winkler, C.R. Stroud, Optics Letters, v. 37, is 7, 1259-1261 (2012).

3. Room-temperature single photon sources with definite circular and linear polarizations, S.G. Lukishova, L.J. Bissell, C.R. Stroud Jr, R.W. Boyd, Optics and Spectroscopy 108 (3), 417-424 (2010). (Issue is devoted to quantum information).

4. Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature single photon sources on demand, S.G. Lukishova, L.J. Bissell, V.M. Menon, N. Valappil, M.A. Hahn, C.M. Evans, B, Zimmerman, T.D. Krauss, C. R. Stroud, Jr., R.W. Boyd, J. Mod. Opt. 5, is 2 & 3, 167-174 (2009). (Issue is devoted to single photons).

5. Room temperature source of single photons of definite polarization, S.G. Lukishova, A.W. Schmid, R. Knox, P. Freivald, L.J. Bissell, R.W. Boyd, C.R. Stroud Jr, K.L. Marshall, Journal of Modern Optics, 54, is. 2-3, 417-429 (2007). (Issue is devoted to single photons: sources, detectors and measurements methods).

6. Single-photon source for quantum information based on single dye molecule fluorescence in liquid crystal host, S.G. Lukishova, A.W. Schmid, R.P. Knox, P. Freivald, A. McNamara, R.W. Boyd, C.R. Stroud, Jr., K.L. Marshall., Molec. Cryst. Liq. Cryst., 454, 403-416 (2006).

7. Dye-doped cholesteric-liquid-crystal room-temperature single photon source, .S.G. Lukishova, A.W. Schmid, Ch. M. Supranowitz, N. Lippa, A. J. McNamara, R.W. Boyd, C.R. Stroud, Jr, J. Mod. Optics, 51, No 9-10, 1535-1547 (2004). (Issue is devoted to single photons).

8. Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host, S.G. Lukishova, A.W. Schmid, A.J. McNamara, R.W. Boyd, C.R. Stroud, Selected Topics in Quantum Electronics, IEEE Journal, 9 (6), 1512-1518 (2003).(issue is devoted to quantum internet technologies).

Entangled - photon sources

Single-photon source set-ups

Some of our publications on using entangled-photon sources:

1. Time-domain measurements of reflection delay in frustrated total internal reflection, G.M. Gehring, A.C. Liapis, S.G. Lukishova, and R.W. Boyd, Phys. Rev. Lett. 111, 030404 - Published 19 July 2013 ("Editors’ Suggestion" for readers to examine).

2. Compressive object tracking using entangled photons, O. S. Magaña-Loaiza, G. Howland, M. Malik, J.C. Howell, and R.W. Boyd, , Appl. Phys. Lett., 231104 (2013).

3. Enhancing entangled-state phase estimation by combining classical and quantum protocols, H. Shin, O.S. Magaña-Loaiza, M. Malik, M.N. O'Sullivan, and R.W. Boyd, Optics Express 21 , 2816 (2013).

4. Entangled Bessel-Gaussian beams, M. McLaren, M. Agnew, J. Leach, F.S. Roux, M. J. Padgett, R.W. Boyd, and A. Forbes, Optics Express 20 (21) , 23589 -23597 (2012).

5. Imaging high-dimensional spatial entanglement with a camera, M.P. Edgar, D. Tasca, F. Izdebski, R. Warburton, J. Leach, M. Agnew, G.S. Buller, R.W. Boyd, and M.J. Padgett, , Nature Communications 3, 984 (2012).

6. The physics of ghost imaging, J.H. Shapiro and R.W. Boyd, Quantum Information Processing 11(4) 949 -993 (2012).

7. Single and biphoton imaging and high dimensional quantum communication, J.C. Howell, P.M. Anisimov, J.P. Dowling, and R.W. Boyd, Quantum Information Processing 11(4), 925-948 (2012).

8. Secure information capacity of photons entangled in many dimensions, J. Leach, E. Bolduc, D.J. Gauthier, and R.W. Boyd, Phys. Rev. A 85 , 060304(R) (2012).

9. Tomography of the quantum state of photons entangled in high dimensions, M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R.W. Boyd, , Phys. Rev. A 84 , p. 062101 (2011).

10. Discriminating orthogonal single-photon images, C.J. Broadbent, P. Zerom, H. Shin, J.C. Howell, and R.W. Boyd, Phys. Rev. A 79 033802 (2009).

11. Momentum-position realization of the Einstein-Podolsky-Rosen paradox, J.C. Howell, R.S. Bennink, S.J. Bentley, and R.W. Boyd, , Phys. Rev. Lett. 92, 210403 (2004).

12. Quantum and classical coincidence Imaging, R.S. Bennink, S.J. Bentley, R.W. Boyd, and J.C. Howell, Phys. Rev. Lett. 92, 033601, (2004).